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SUMMARY 

The effects of steady rolling on the longitudinal and directional 
stability of aircraft have been studied theoretically. Simplifying 
assumptions have been made with regard to the longitudinal and lateral 
motions of the airplane in order to obtain a solution which shows the 
principal effects of the rolling motion. 'slling has been found. to 
cause instability if the directional and longitudinal stabilities 
are different when the rollinn frequency exceeds the lower of the 
pitching and yawing natural frequencies of the nonrolling airplane. 
This instability lasts only during the time the airplane is rolling and ( 
would not, therefore, affect the normal flight of an airplane. In the 
case of airplanes of short span and high density, csrrying most of their 
weight in their fuselages, and flying at high altitudes, this instability 
might cause dangerous attitude changes during rapid rolls. If the 
directional and longitudinal stabilities are about equal, the instability 
due to rolling will not occur. 

If the rate of roll exceeds both the pitching and yawing natural 
frequencies of the nonrolling aircraft, the aircraft will be stable. 
A continuously rolling aircraft will be stable in this case even when 
the nonrolling aircraft has a certain amount of instability about 
one axis. 

Ap$lications of these conclusions to rolling airplanes and missiles 
are discussed. 

I 

INTRODUCTION 

When an airplane rolls about an axis which is not alined with its 
longitudinal axis, inertia forces sre introduced which tend to swing the 
fuselage out of line with the flight path. These forces sre ordinarily 
neglected when the usual theory of lateral stability of aircraft is used 
to calculate the motion of an airplane in a roll. This assumption is 
probably justified for the case of most conventional airplanes because 
inertia forces involved are small compared with aerodynamic forces on 
the airplane. Design trends of very higk-speed aircraft, however, which 
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The rolling motion introduces coupling between the longitudinal and 
lateral motion of the aircraft. An exact solution of this problem is 
very complicated because of the lsrge number of degrees of freedom 
involved. In the present report, simplifying assumptions have been made 
with regard to the iongitudinal and lateral motions of the aircraft in 
order to obtain a solution which shows the principal effects of the 
rolling motion. 

a, b, c, d, e ' coefficients of quertic 

A constant (amplitude ratio) 

b wing span 

c wing chord 

C viscous dsmping coefficient 

CL lift coefficient - 

0. 
;pss 

include short wing spans, fuselages of high density, and flight at high 
altitude, all tend to increase the inertia forces. due to rolling in 
comparison with the aerodynamic restoring forces provided by the longi- 
tudinal and directional stabilities. It is therefore desirable to 
investigate the effects of rolling on the longitudinal and directional 
stabilities of these aircraft. The inertia forces due to rolling velociQ 
are similar to those which sre alwsys taken into account in the study 
of spinning, where they have a predominant effect. The effects of 
rolling on stability discussed in this report occur only during the 
period in which an aircraft is rolling, and therefore they do not-have 
any effect .on the stability of-an aircraft in steady flight-;-- 

. 

Some types of research missiles, which were not roll-stabilized and 
therefore rolled continually in flight, have been mloyed to investigate 
longitudinal and lateral stability of airplane configurations. Further- 
more, certain types of guided missiles may intentionally roll continually 
in flight. An analysis would therefore be desirable to determine the 
effects of the rolling motion on the behavior of these missiles. 

. 1 
I 

. 
I 

SYMBOLS 

Cm 

D. differential operator 

e base of natural logarithms 

l 

t 
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momentif-inertia parameter Ix - Iy 

--( 1 ?z 

shift in aerodynamic center or in stick-fixed maneuver point 

momeht of inertia 

moment of inertia about X-axis 

moment of inertia about Y-axis 

moment of inertia about %exis 

spring constsnt 

roUAng moment; 

aileron rollin@; 

orldft 

moment 

pitching moment; or Mach number 

yawing moment 

rolling velocitg about body skis 

steady rolling velocity 

pitching velocity about body axis 

yawing velocity about body sxis 

wing area 

time 

nondlmensionfiLtime (Pot) 

nondWensional time required to demp to one-half amplitude 

true airspeed 

body axes of aircraft 

angle of attack 

angle of sideslip 

angular displacement of single-demee-of-freedom system 

fraction of critIcal damping of single-degree-of-freedom 
system 
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fraction of-critical. dsmping in pitch of nonrolling aircraft 

fraction of critical damping in yaw of nonrolling aircraft 

angle of pitch relative to flight-path direction 

I 

? 

: 
I 

P air density 

$ 00hih (phase wej 

angle of saw relative to flight-path direction 

actual frequency of single-degre+of-freedom system 

nondimensional frequencies of motion of r@lw aircraft 
with respect to body axes -..-. -- 

ur, undamped natural frequency of single-degre~f-freedom system 

nondimensional undamped natural frequency in pitch of nonrolling 
aircraft (ratio of pitching frequency to steady rolling 
frequency) . 

, 

9 nondimensional undamped natural frequency in yaw of nonrolling 
aircraft 1 

i&T 

Dot over a symbol indicate-s derivative with respect to time. 

ANALYSIS 

The motion of the aircraft is studied.by means of Euler's equations. 
Theee equations are set up in terms of angular velocities and acceler- 
ations with respect to axes fixed in the aircraft.-:The period and 
damping of aw. motioti obtained as a final result will, therefore, be 
those which would be measured by instruments, such as accelerometers, 
mounted in the aircraft during the meuvers. Euler's equations are 
as follows: 8 

,‘r Ii L = Ixi, - qr(Iy - 1~) (1) 

_ M.= Ifi - rp(Iz - Ix) 

u,;r; N= Ifi - pq(Ix - Iy) 

(2) 

(3) 

l 

t 
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It is assumed that the mass of aircraft is distsibuted in a plane, so 
that $ &X'IY. Equation (l), relating to the rolling motion, then 
becomes 

L.= @LB + rs1, -I- pLp + La 

In the type of motion under consideration, the aileronrolling 
moment La is offset, on the average, mablybythe dampingmoment PLp 
while the quaatities P, 9, and r in general oscillate about values 
close to zero. It is assumed in the analysis which follows that the 
rolling velocity is constant and that the effects of the variations in 
sideslip, pitching velocity, and gating velocity in producing rolling 
momenta through aerodynamic or inertia effects may be. neglected. 
Equation (l), therefore, disappears from the analysis and the remaining 
equations become linear. As a result of this assuqtion, it is expected 
that the analysis may not apply very closely in cases where the rolling 
velocity 7s small and the dihedral effect is large because a large 
dihedral effect would result in appreciable variation of rolling 

_ velocity during a yawing oscillation. I- ,a 
. I 

The equations involving linear accelerations along the X-, Y-, 
and Gazes sre omitted from the present analysis. The equation involving 

c longitudinal accelerations is omitted because the&motion is assumed to 
occur at constant airspeed. The equations involving lateral and normal 
accelerations are omitted because; for the purposes of the present 
analysis, the longitudinal-gnd directional motions of-the aircraft 
which is not rolling are each considered as single-degree-of-freedom . . motiops involving only angular displacements. This assumption does not, 
however, exclude the possibility of applying the analysis to an aircraft 
trimmed at an angle of attack different from zero. In this case, as the 
aircraft rolls, it travels in a helical path. The lift on the aircraft 
balances the centrifugal force developed by the helical motion. Both 
the lift and centrifugal force, however, act through the center of 
gravity and do not influence the moments acting on the aircraft. The 
stability of, angular motions of the aircraft is therefore determined 
by the moment equations (equations.(l) to (3)). The helical motion 
simply introduces steady angles of pitch and yaw about which the 
disturbed motions take place. 

In the discussion which follows, the terms "oscillation frequency" 
and "rolling freqvncy" sre often employed. By uoscillation frequency" 
is meant the circular frequency of a sinusoidal motion, or 2~t times 
the frequency in cycles per second. The term "rolling frequency" is 
used interchangeably with '*rolling veloci-t;3r" and is the rate of rotation 
in roll expressed in radians per second. In cases where ratios of these 
frequencies are used, the frequencies may, of course, be expressed in 

. cycles per second instead of radians per second. . 
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In accordance with the assumption that the longitudinal 
directional motions of the aircraft which is not rolling sre 
as singl&egree-of-freedom motions, the pitching and yawing 
for the nonrolling aircraft become 

TN No. 1627 ? 

.* 

and I 

each considered 
equations 

(4) 

(5) 

The motions obtained from the solutions of these e&ations would be damped 
osci~ations in pitch and yaw. The values of natural frequency and ---.. 
dsmping of these oscillations msy differ somewhat from the values of 
natural frequency and Wpdng obtained from the usual stability theory 
in whioh additional degrees of freedom sre taken into account. It would 
be possible and probably desirable, however, to substitute equivalent 
values for the restoring and damping moment coefficients of equations (4) 
and (3) such that the-same frequency and.damping for the single-degree- 
of-freedommotions would be obtained as from the more complicated 
stability theory. An alternate method which accomplishes the ssme result 
is to set up the equations from the outset in terms of t&-undamped 
nat~frequency and damping ratios of the motion of the nonrolling 
aIrcraft:-T!& eocedure; which follows the method *and notation of 
reference 1, may be desdribed briefly by considering a single4egree4f- 
freedom system cotiisting of a plvoted beam, such as that shown In 
figure 1, moving under the influence of a spring restoring force and 
viscous dRm‘ping. The equation of motion for the system is 

Ii: + ci -!- IQ = 0 

If the following substitutions are made, 

the equation bedomes 

The quantity % is known as the undamped natural frequency and is the 
frequency of free oscillations of 563 system when-theviscous damping is 
zero. The quantity J-is known as the damping ratio and is the ratio of 
the existing damping of the system to that required for critic 

. '- The free motion ofthe system, which is a decreasing..osc 
given by the expression _ . ix i- 1 C. If 
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In this fommla, A and .# are constants depending on the initial 
condition&3. The actual frequency of a free oscillation a, is related 
to the unmed natural frequency by the formula 

Co= SG-F 

If it is desired to calculate,from the frequency and damping the 
restoring-moment and *ping -moment coefficients for the single-degree- 
of-freedom system which sbmla%es the aircraft either ln pitch or yaw, 
the preceding relations for this type of system may be employed. 

The substitutions required to express equations (4) and (5) in 
' terms of the natural frequencies and damping ratios of the motions in 

pitch and yaw may be made in a ssmilar manner to those of equations (6) 
and (7). In'order to simplify the notation of the enalysis, the 
frequencies of the nonrolling aircraft WiU hereinafter be taken as 
ratios of t* oscillation 'frequencies to.the steady rolling frequency Poe 
The undaxuped"natural frequency in pitch is therefore given by the 
expression . 

-MS %Po = $< --q or 2 2 % p. -Me =- 
IY > 

The demplng ratio in pitch is given by the expression 

(8) 

Analogous expressions are ueed for the frequency and dsmping of the 
yawingmotions. 

It is now desired to express the equations for the robling aircraft 
in terms of these variables; Inasmuch as the rolling does not influence 
the aerodynamic moments acting due to changes in pitch and yaw, the 
external moments sre the same as those given in equations (4) and (5). 
The pitching and yawing equations for the rolling aircraft (equations (2) 
and (3))then becozie 

M= 0% 3- Oq 

= Iy(B - rp) 

N = *IT* + rNr 

= ii+ -p&x - Iy) 
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i Dividing these equatiom,by IY and IZ, respectively, gives the 
fo- I 

. Ix - IY r-pqfZ -*Iz-r$=O 
( > 

% 

If the expressions for the undamped natural frequeCcies and tiping ratios 
in pitch and yaw (formulas (8) and (9)) ere inserted in these equations, 
the pitching and yawing equations become 

b- rp, + 2f;mpoq + q2p02e = 0 

. 
r - P,ci 

IX ( > -Iy + 2S$9P$ + q2Po IZ 
23,=0 

Eere.the rolling velocity, assumed constant, has been writ&n- po. For 
the small angles considered in the present analysis, the angle of 

.j,?pitch 8 is taken as the Projection on the plane ofsymmetry of the 
v!! '2 aircraft (the X&plane) of the angle between the flight path and the :$vT~P 
Y longitudinal axis of the aircraft. Theangleofyaw $ istakenas5: 

the projection on the X&plane of the angle between the flight path and 
the longitudinal s&s. The axes X, Y, and Z srstakenasthebody 
axes of-the aircraft. 

Since the restoring forces on the aircraft are related to f3 
and $9 the angular velocities 9 and r must be expressed in terms 

. 

1 
1 

l 

a 

of these angles and their derivatives. It7Lsthere*e necessary to . 
resolve the angular velocities q and r, whicharemeasuredwith - 
respect to the body 8x88, along the fligh6-Pathaxes. This Procedure 
is illustrated in figure 2, from which itmsy be shown that for small 
angles of Pitch and yaw P 

. . 

Hence 

, 
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If these substitutions sxe made, the equations become 

ii - Pas' - Po$ - PO% -t 2503Po(Q - PO*) -I- qj2P02Q =o 

;G + P$ + (PO% - po&F + ~C~PO($ + PO@ + $%o% = 0 

where for simplicity 
Ii - Iy 

IL7 
has been set equal to F. It is convenient 

to express time nondimensikally in tekms of 
rolling motion. Let the nondimensional time 

D=d 
dtr 

ld =-- 
PO dt 

the frequency of the steady 
t' equal pot. Then define 

In term of this operator, the equations become 

the motion of the rolling aircraft, the detemninant 
of 0, and q Is set equal to zero. This determinant * 

In order to analyze 
of. the coefficients 
IS 

The determinant msy 

where 

a= 

be expanded to give the q.usrtic 

aD4+bD3 + cD2+dD+s =d (10) 
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From the roots of this quartic, the period anddamping ofthemodes of . 
motion of the rolling aircraft may be det-ermked. Because of the method 
adopted for expressing time nond3mensionally,.the frequencies of the 
motion thus determined are obtained as ratios to the steady roUIng 
frequency. Routh~s~disc~iminant for tMs quartic is given by the 
formula 

bed - d2 - eb2 

Placing this expression equal to zero gives the condition for the boundary 
between increasing and decreasing oscillatfons of the system. When the 
coefficients are substituted in this expression and the operations are 
carried out, Routh's discrimlnant becomes 

A condition for the boundary between stability aud divergence is t 
obtained. by setting the coefficient e oPthe quartic (formula (10)) 
equal to zero. 1 

In order to simplify the numerical analysis and at the same time to . 
show the principal effects of the rolling motion, it is helpful to consider, .t 
the case where the da&ping ratlos cQ aud I;* of the longitudinal and t 
directional oscillations of the nonrolling aircraft-are zero. This case 
of undamped oscillations is of much.gractIcal interest because the 
oscillations of hi$I+density aircraft flying at high altitudes 81'8 
ummU.y poorly damped. 

If the damping ratios ce and I$ equal. zero, the determinantal 
equation for the rollLug aircraft becomes . 

sD4+ cD2i e = 0 

where 

a= 1 

c=-F+1+w2 +-Lue2 
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This equation may be solved explicitly as a quadratic in D2 as follows: _ _. 

,J2=_$+%;+‘-‘& 
JC 

~2+~02+l-F 2 

) -CDe2q2y2-qe 2F -i- F 
2 

02) 
The frequencies of the oscillations of the rolling aircraft sze obtained 
from the numerical values of D, the square root of D2 (formula (12)), 
when D is imaginsry. There sre two frequencies: one designated q, 
obtained with the minus sign before the radical of formula (12), and the 
other designated u+, obtained with the plus sign before the radical. 

DISCCSSIONOFRESULT5 

Case of zero dsmping of nonrolling aircraft.- The first case 
considered is that of an aircraft with frequencies q and 9 in pitch 
and yaw vhen it is not rollin@; and with zero demping of these 
oscillations (cQ and cq = 0). It will also be assumed that IX = 0, 

or F = Ix - IY =-. 1 
Iz 

This case is a reasonable close approximation to 

. many practical aircreft and missiles of short span with slender fuselages 
in which most of the weight is concentrated. 

The characteristics of the motion of a rolling aircraft of this type 
sre shown in figure. 3. 
regions in a plot of 2 

his figure presents the stable snd unstable 
% against w2 and also shows contour,lines of 

the frequencies of the oscillations performed by the rolling aircraft. 
This figure brings out the symmetry in the effects of w and 9 which 
would be eaected from physical considerations for the case of IX = 0. 

When both the pitching and yawing frequencies of the nonrolling 
aircraft are greater than the steady roJ&q frequency under consideration, 
the motion is stable, in the sense that there is no divergence or 
increasing oscillation. This condition is shown by the stable region 

I in the upper right--hand psrt of the diagram where cue > 1 and 9 > 1. 
In this region, the rolling aircraft has two modes of oscillation, both 
of which are undamped and have frequencies different from those of the 
oscillations of the nonrolLing aircraft. If the pitching frequency of 
the nonrolling aircraft CDS equals its yawing frequency u$, then one 
mode of oscillation of'the rolling aircraft has a frequency equal to this 
frequency plus the rolling frequency and the other mode of oscillation , 

. . 

c 
. 

has a frequency equal to this frequency minus the rolling frequency. In 
general, for q not equal to u.+ one frequency of the rolling aircraft 
is greater than the higher frequency of the nonrolling aircraft; and the 
other frequency is less than the lower frequency of the nonrolling aircraft. 

. 
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When-one of the frequencies of the nonrolling aircraft-equals the 
frequency of the steady rolling motion (we or w = l), the aircraft 
becomes neutrally stable in one mode, as shown by the fact-that the 
frequency of-this mode equals zero. Thie phenomenon may be explained 
physically on the basis that the restoring forces agting on the nonrolling 
aircraft which produce a certain oscillation frequency are just offset by 
the centrifugal forces which attempt to swing the fuselage out-of line 
with the flight path when the aircraft rolls with this frequency. This 
effect is somewhat analogous to a rotating shaft operating at- its critical 
speed. In fact, if the pitching and yawing frequentiies of the aircraft 
are both equal to the roU.ing frequency, the conditions are exactly 
similsx to those encountered when a shaft having equal stiffness in all 
directions rotates at its critical speed. When the frequencies of the 
aircraft in pitch and yaw are different, and only one of these frequencies 
equals the rol.Ung frequency, the conditions may be shown to be analogous 
to those encountered when a shaft of flattened cross section rotates at 
one of its two critical speeds. It may be of interest-tu note that the 
theory for the behavior of such a shaft is identical with the theory 
developed in this report farthe rolling aircraft-. 

When one frequency of-the nonrolling aircraft is less than the 
steady rolling frequency and the other is greater, the rolling aircr& 
becomes statically unstable in one mode and performs .a straight divergence 
as measured by instruments fixed in the aircraft. If both frequencies 
of the nonrolling aircraft are less that the steady rolling frequency, 
however, the rolLIng aircraft is stable, as shown by the smsll stable 
region in the lower left--hand corner offigure 3 for CICQ and CL+ 
between 0 and 1. Here .again there are two modes of undamped oscillation. 
In this region, when the values of q and q sre equal, the stability 
is analogous to that of a shaft having equal stiffness in all. directions 
rotating above its critical speed. When G and U+ both approach zero, 
which means i&&t the static longitudinal and directional stabilities both 
approach zero, the two frequencies ofthe rolling aircraft both approach 
the rolling frequency. Physically, this condition means that the rolling 
aircraft can have its axis tiLted from the flight path and, because of 
its lack of static stability, will continue to roll about this tilted 
axis. This rolling motion will cause periodic changee in the angles of 
attack and yaw with a frequency equal to theroll~ frequency. These 
periodic' changea would be measured as constant-amplitude pitching and 
yawing oscillations by instruments fixed in the aircraft. 

: 

I 

A small stable region exists where the frequency.of'-one mode of 
oscillation of the nonrolling aircraft is less than the rolling frequency, 
and in the other direction t&e aircraft has a certain degree of-static 
instability. This stabilizing effect .of the rolling m&ion mey best be 
visualized by considering the motion of the aircraft with respect to 
fixed axes. A fin which provides stability in only on+ diraction (ssy, 
yaw) will make the rolling aircreft stable about-both axes, provided 
the rate of roU is fast enough, because the fin rapid&y turns from one 
plane to another. This effect okay occurs for a relatively limlted 
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range of parameters, however, and is shown in figure 3 as the stable 
region in the range of negative values of CI+J~ and w2. A negative 
value of q2, corresponding to an &nagineq value of the frequency, 
represents an exponential divergence defined by the equation 

This same equation, of course, represents a sinusoidal oscillation of 

frequcYy we 
for real values of w. Figure 3 was plotted in term3 

of Ue and mq* rather than 'u8 and 9 in order to include the 
winery valuee of these frequencies. 

. 
In the lower lefthand corner of figure 3 there is a region of 

increasing oscillations as measured by instruments fixed in the body. 
In this region, where the nonrolling aircraft has a large amount of 
static instability, the longitudinal exis of the rolling aircraft 
performs a maneuver approximatfng straight divergence with respect 
to fixed axes; but because of the rolling, this motion shows up as an 
increasing oscillation with respect to the body axes. :- 

The effect of distributing weight along the wings as well as along 
the fuselage on the behavior of the,rollLng aircraft, again with zero 
damping in pitch and yaw (fe = Q = 0), is shown in figures 4 and 5. 
Figure 4 presents the contour lines of the frequencies of the rcll3ng 
aircraft on a plot of u$ against CC$ for F = -0.666. This value 
of F corresponds to the case where the moment of inertia about the 
X-axis equals 0.2 times the moment of inertia about the Y-axis. The 
results indicated by this figure are similm to those for the case where 
all the weight is located in the fuselage. A somewhat smaller value of 
the directional stability ia required, however, to avoid divergence in 
yaw of the rolling &craft. Figure 5 is a similar plot for F = 0. 
This value of F corresponds to the cfLse where the moment of inert&a 
about the X-is equals the moment of inertia about the Y-axis. In 
this case a rolling motion produces no inertia yawing mm.ent on the 
yawed aircraft. With lasge stability in pitch, the yawing frequency of 
the rolling aticreft would therefore be expected to be the same as that 
of the nonrolling abcraft. The results of figure 5 indicate that the 
frequency u+, which represents mainly a yawing motion with large 
stability in pitch, approaches asymptotically the yawing frequency CD* 
as e+~ becomes lf3rge. Furthermore, the divergence boundary in yaw, 
which occurs at CUJ, = 0 for the nonrolling aircraft, is unchanged by 
the rollinn motion. 

The special case where cue = CUE and IX = 0 may be analyzed more 
stiply by use of the equation of motion of the body with respect to axes 
fixed in space. This analysis allows a clearer physical interpretation 
of the motion of the body and serves as a check on the results obtained 
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pre.viou6l.y by- mi3an.R of EiLb+s equations.. This special cafle correapands 
to conWticms axistingalonga kp line through the cftxt.giu infigure 3. 
The motion ~8 tha aystemtith respect to axes flxed In-space is derived 
in a folloxIng sectiouof t&la wp.er, but first the rasults already 
ohtainedby means of &ler'a equaticms are stated.. I&may be seen 
from figura 3 or derived fYcomf2mmLLa(IP) that the fYequenc%es of the 
rolling aircmfYtititArespect to body axes for this case are given 
by the fm 

a&.&= Iqg -11 

Here, u$and~sre mndlm.enaional frquencisa expressed as ratios 
to the steady rolling frequency. The pitching frequency % of the 
nomolUing aimraft is equal+to. the yawing frequency w and etliher 
symbol Ddght be UEsd. The member on the right-baud side of the equation 
for CI+ indicates the absolute value- of the quantity me -1. l3Z these 
formula& exe put interms ofactual f'raq?mncIes, rather than nondimensional 
frequencies, they beco?me 

cu2po = UgPo- - t I+)( ::; 
1 

Hence, the frequencies gthe rolling aircraft &e given by the SLIM and 
by the absolute value of the dif%arace kctween the frequency of the 
nonroUingaircxaft and.the roll31@ fmqmcy. 

The solution for the motion based on the equations of motion with 
respect to fixed axes is now considered. .The dynamk system is shown 
in figure 6(a). The restoring forces pravided by tha fins will us 

zff be the same with respect-to fixed axes as with respect to axes roll 
with the body. The forces would be exactly the same, for example, If 
the body had a fin in tha form of a circular cyl&der, The essum&ion 
that the forces are the same would be a close approximation to the 
conditions exists with a conventional four-fin tail. Because all the 
weight is locate along the XAxis, any rolLLnnmotion of the body about 
the X-axis has no effect whatever an the motion of the XAxis of the body 
with respect to fixed space. The ma-t&m of the X-axis of the body, ' 
therefore, is composed of vertical and horizontal oscillations of 
frfw=w +p,, exactly as tithe case of the nonrolkingbody. The 
most generalmotion of the axis- is a combination of these two corrQonenk6 
with arbitrary amplitudes I&. phase dffference. Thds CorLlbinatiQn in 
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general causes the axis to swingso- that any point on the axis traces an 
elliptical path, as shown in fiwe 6(a). In order to see how this 
result corresponds to that obtained previously for the motion tith 
respect to body axes, the frequencies measured with reaperct to fixed 
axes must be converted to frequencies measuredwith re6Pec-t to exe8 
rollingwiththe body. This conversion is a kinematic tmsusfomna--ion, 
with no dyamics involved. Ordim32i.Q,themotionofthe axiswould 
be resolved into vertical and horizontal. components as mentioned. previou;sly. 
If the body rolls when the &a ie undergoing a vertical or horizontal 
oscillation, however, the resulting osdillations with respect to body 
sxes will not have constant amplitude. In order to obtain results 
equivalent to thoee previously described, it ia necessary to break the 
motion of the axis into components which lead to cons-tanrt-amplitude 

. oscillations with respect to body axea, Two such motions are possible: 
one a clockwise and the other a comterclockwise rotation of a Point on 
the rear of the body. This Point moves in a circular pathtith 
frequency u]epo. These motions are shown in figure 6(b) * These c3xzCLar 
motions of the body with frequency %po ~3328 possible m-Mm13 because 
they may be obtained by combining vertical &Cl. horizontal oscillations 
of equal amplitude with a phase difference of 90'. Ang possible motion 
of the aircraft may be produced by ccmWningthese two circular motions 
wtth the correct phase difference ti amplitude. Emmples of Possible 
combinations exe given in figures 6(c) and 6(d). Figure 6(d) shows that 

1 the elliptical path, which is the most general tspe of motion, may be 
produced by t&s combination. 

The frequencies of the rollinn aircraft as 66811 frombody axes may 
ba derived by considering the angle-of-attack changes as the body rolls 
whenits axis is performing one ofthetwo circularmotions. The case 
where the axis~r~lves in a counterclockwise direction with frequency u$po 
while the body rolls clockwise with a frequency Po corresponds to the 
formula . 

%Pa = 'UBPO + Po 

The case where the axis revolves in a clockwise direction with 
frwuenc;gl qp0 while the body rolls clockwise with a frquency p. 
corresponds to the formula 

?5@0 =\eJQP,-Po( * 

The results obtained by the analysis based on fixed axe-s may therefore 
be converted to body axes to give the same result as that obtained 
directlyfromthe analysis basedonbody axes, 

A case in which.the two solutions might be considered to disegrse 
is one in which the rolling frequency e-quals the pitching (and yating) 
frequencies. The results plotted in figure 3 show a condition of neutral 
stability to exist at this point, whereas the stability of the a3ds Of 
the body in the analysis based on fixed. axea was stated to be independent 
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of the rate of roll. It should be noted, however, that any slight out- 
of-trim pitching moment applied to the rolling aircraft at this point 
would produce a vertical and horizontal moment~ing sinusoidally with 
time at the natural frequency of the axis. A condition ofkcesonance 
would therefore exist and the vertical and horizontal amplitudes of 
the undamped system would increase indefinitely. In the analysis based 
on body axes, this'same outif-trim pitching moment Etpplied to the 
neutrally a-table system would cause the angle of pitch to increase 
indefinitely. The two methods of emaly~is, therefore, lead to the 
same result. 

If under the conditions where the rate of roll equals the pitching 
(and yawing) frequencies, the axis of the body is displaced in pitch, 
then a yawing velocity will be introducedwith-respect to body ems. 
Any damping forces proportional to yawing velocity-would extract-mgy 
from the system arid prevent the amplitude from building up. The damzing 
is therefore expected to increase the stability of the system, at lead 
under conditions where the pitching and yawing frequencies are close to 
the rolling frequency. The effects of &ping ere now considered on the 
basis of the theory. 

Case of-damped oscillations of nonrolling aircraft.- The rate of 
decrease of amplitude of the oscillations of the nonrolling aircraft is 
determined by the demping ratio f . The fraction of the original 
amplitude to.which the oscillation decays in one cycle is shown as a 
function of 5 in figure 7. For c = 0.2, the oscillation damps 
to 0.28 of its original amplitude in one cycle. This amount of damping 
is greater than that us* found for either the pitching or yawing 
oscillation of an aircreft of high density and is used to give an 
extreme example of the effect of dauiping on the stability of the 
rolling aircraft-; 

. 
The divergence bounda;ry for the rolling aircraft-is determined by 

setting the coefficient 8 of the quartic (equation (10)) -equal-to zero. 
The divergence boundary for the case c-, = I& = 0.2 and IX = 0 is given 
on a plot of %? against q2 in figure 8. This figure also corresponds 
to any values of Es and !+ satisfying the relation (of* = 0.04 
because these quantities enter into the coefficient:.e only as a product. 
By comparing the boundaries of figure 8 with those of figure 3, it may be 
seen that the addition of damsing has broadened the stable region in the 
neighborhood of the point 'me = 1, 9 = 1, that is;-where the frequencies 
in pitch and yaw are close to the roning frequency. In other parts & 
the figure, the bounderies are but--little chauged. The-boundary between 
increasing and decreasing oscillations is not shown in figure 8. 

In practice, when the frequency of the nonrolling aircraftis 
changed, the damping ratio also changes. For example, if the frequency 
in pitch is changed by varying the centeraf+avity location, the dmping 
ratio increases as the aircraft approaches neutral stability because the 

. 
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damping moment provided by the tail remain5 nearly constant while the 
restoring moment decreases to zero. The condition encountered in 
practice is more neerly represented by the condition that 
a constant. 

Q.bQ equals 
This condition, for a aingle4esee-of-freadom system, is 

fulfilled when the viscous dsmping device remains the 5eme as the spring 
restoring force is varied. The divergence boundaries for the caee 

- be = 0.2 and $,b$ = 0.2 ere plotted in figure 9. The results ere 
similsr to those of figure 8 although, of couree, the damping coefficient 
is less at l.srge values of the nonddmensional frequencies and greater at 
frequencies approaching zero. In figure 8, the actual damping moment 
decreases to zero when the corresponding frequency equals zero, and for 
this reason the bounderie crone the same point as those of figure 3 
when q=O or v=O. 

The boundery between decreasing and increasing oscillations for the 
case of damped motion is obtained by setting Routh*s discrimlnant equal 
to zero. This boundary is also plotted in figure 9 for the case 
c&g = 0.2 and $,u+ = 0.2. This boundary is almost coincident with 
the boundary between constant-smplitude oeciUation5 and increasing 
oscillations given in figure 3. Thus, the boundary between constant- 
amplitude and increasing oscillations, which cannot be strictly termed 
a stability boundary, goee over into the Routh boundery as soon as any 
damping is present. 

The effect of demping on the characteristics of the motion for 
representative combinations of frequency and dampIng ha5 been studied 
by determining the roots of the stability quartics obtained from 
formula (10). The results ere presented in figure 10 which show5 the 
roots on enlarged plots of %2 against *2 similar to those previously 
given in figures 3 and 9. Three conditions have been investigated, 
namely, zero damping (f& = fw = 0), equal demping about each 
axis (E;&qj = t&b$ = 0.2), and zero dsmping about one exie combined 
with ding about the other axis twe = 
vice versa). 

0 and (qbb = 0.2 or 
The real roots represent convergencea and divergences 

whereas conjugate complex roots represent oscillations. Real roots or 
real pert5 of complex roots determine the nondimensional time to 
decrease to one--half amplitude, if they are negative, or to double 
amplitude, if they are positive, in accordance with the formula 

t’ 0.693 
'i2.= Real part of complex root 

, The imaginary parts of complex.roota give the nondjmensional frequencies 
directly. Figure 10(a), which shows the results with zero demping, is 
atiply a repetition of what has previously been presented in figure 3; 
but the roots are given to facilitate comparison with the cases of damped 
motion. This figure show5 that constant amplitude oscillations exist 
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within the stability boundery and that a divergence is present outside 
these boundaries in the region ehown. 

Figure lO(b)sh the results when both mocles of oscillation of 
the nonrolling aircraft have equal dsmping andcorreeponds to the case 
for which divergence boundaries are shown in figure 9. It may be seen 
that in most of the stable region two modes ofoscillation occur, both 
of which damp to one-half amplitude in the seme time as the damped 
o5cill.ations of the nonrolling aircraft. The period5 of the osciYation5 
are very nearly equal to those existing with zero damping. As the 
divergence boundary is approached very closely, however, one mode of 
0sciJLLation change5 into a pair of convergences. One of these convergence5 - 
becomes weaker upon closer approach to the boundery until atthe boundary 
it is transformed into a divergence. For the one point investigated, the 
rate of divergence is slower than that for the case with zero damping. 
The damping changes the red root, which determines rate of divergence, 
by about the 5ame amount as it changea the real pert of the complex root, 
which determines the damping of the oscillation. It may be concluded 
thamithin the region of constan~plitude oscillations of the 
undemped motion, damping is very effective in providing stability and 
causes the motion to disappear in the same time as in the caee of the 
nonroUingaircraft. Outside the divergence boundary for the dam$d 
motion damping reduces the rate of divergence, but for practical value5 
of damping this reduction would not be important. 

Figure IO(c) presents the results for the case when one mode of 
oscillations of the nonrolling aircraft is well damped and the other 
mode has zero damping. Although this condition is not likely to exist 
in practice, it represents an extreme example of this inequality. This 
example is intended to bring out-the differences between this ca5e and 
the case of equal damping of the two modes. The dlvergence boundaries 
in this case are-the 5ame as those for zero damping (fig. 10(a)). 
PQsically, this’ fact-means that when the aircraft has a mode of 
oscillation of-the same frequency.as the roUi.ng motion, it may be 
oriented in such a way that-no angular velocity occurs about--the axis 
around which damping forces exist. Thus, the damping can have no effect 
on this mode. In the region where oscillations exist, the damping is 
one-half as great as in the case of equal damping. This result means 
that when the airplane is rolling the demping is effective about half 
the time. The rate of divergence in the unstable region is intermediate 
between that for the ca5e with zero damping and thatwith equal damping 
about-the two exea. 

Full-scale airplanes.? The previous analysis indicate8 that 
instability may be caused by very rapid rates of roll in small heavily 

. 
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loaded airplanes carrying a ler$e proportion of their weight in their 
fuselages and flying at high altitudes. This instability last5 only as 
long as the airplane rolls and would not, therefore, cause difficulty 
Jn normal flight. The instability in a roll might, however, cause an 
airplane to reach dangerous attitudes if the divergence were sufficiently 
rapid. 

The rate of roll of an airplane with a given aileron deflection and 
true airspeed remains approximately constant as the altitude is increased, 
but the periods of the,longitudinal and directional oscillations increase 
because of the reduced indicated airspeed. The rollinn frequency may 
possibly exceed one or the other oecillation frequencies, with the result 
that instability of the type discussed wouldbe encountered. For example, 
the rolling frequency and the frequencies of the pitching and yawing 
oscillations of an existing transonic research airplane' sre plotted ae 
a function of altitude in figure ILL. This airplane ha5 alarge amount 
of directional stability, so that the yawing oscillation has a higher 
frequency than the pitching oscillation. With the asamned value 
of pb/2V of 0.05 and Mach nmiber of 0.8, the rolling frequency 
exceeds the pitching frequency at an altitude of about 28,000 feet when 

the static margin dc, 

0 G 
is 0.05, or at 46,000 feet when the etatic 

M 
mJ3g-n is 0.10. The airplane would perform a longitudinal divergence in 
rolls ,of this rate at higher altitudes. Higher rates of roll would, of 
course, cause instability at lower altitudes. 

The instability would not be present if the periods of the pitching 
and yawing oscillation5 were equal. It would appesz advisable to provide 
approximately equal values of longitudinal and directional stability on 
airplanes that are intended to roll rapidly. Because the longitudinal 
stability inevitably veries with changes in centeMfqavity position, 
however, this condition may not be easy to realize in praotice. It is, 
therefore, desirable to prpvide fairly large values of both longitudinal 
and directional stability on airplanes with high rates of roll in order 
to avoid the imtability due to rolling. 

The rates of divergence for the unstable cases,investigated am 
generally not ltige enough to cause unduly ledge changes in attitude of 
the airplane in rolling to angles of bank up to 90°, but they may cause 
serious attitude changes in a complete 360° roll. l+ge yawing rctonkents 
due to rolling, and pitching moments due to sideslip, are usually present 
which cause displacements in pitch and yaw during the early stages of a 
roll. These displacements would increase rapidly if in5tability were 
present. Consideration of these disturbing moments alone leads to the 
conclusion that rel.ativeLiy lerge values of directional and longitudinal 
stability ere desirable on airplanes intended to roll rapidly. 
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The effect of rolling on the longitudinal stability in the case when 
the directional stability is very large may be considered as a forward 
shift in aerodynamic center or in the stick-fixed maneuver pointi---- This 
shift is given as a fraction of the chord by the expression 

h 
81~ pb 2 

=- LV.. 
CL @cb2 . 

a 
._ 

On a given erirplane the shift in maneuver point is thus Proportional 
to (Pb/2Q2 and varies inversely as the air den5ity. This 582318 formub 
applies approximately for practical values of directional stability, 
provided that the longitudinal stability is small compared with the 
directional stability. For the airplane used ae an example in figure ll, 
the shift in maneuver point with a value of pb/2V of 0.05 at sea level 
is 4.6 percent--chord and at 50,OOO.feeG altitude is 31 percent chord. 

Missiles.- Some missiles differ fromfullt3csJ.e airplanes in.having 
much smaller wing span, higher density, and a greater Proportion of 
weight in the fuselage. The rolling frequency o?these missiles mey 
therefore be larger in comparison with the frequencies of their longitudinal 
and directional oscillations. 

Some research missiles, which were not roll-stabilized, have been 
used to investigate the longitudinal and directional stability of 
airplane configurations. The Preceding anal.y5is show5 that the frequencies 
of oscillations recorded by in5truments in the missile cannot be used 
directly to compute the.longitudinal and directional stability unless 
the rolling fre,quency is very emall in comPerison with these frequencies. 
If the rate of roll were recorded and a sufficiently long record of the 
motion were obtained under steady condition5 to enable determination of 
the frequencies of both modes of oscillation, it wOuld be theoretically 
possible by use of chart5 such as figures 3 to 5 to compute the 
frequencies of the nonrolling aircraft. These steady conditions are 
rarely obtained in Practice, however. Devices to limit the rate of roll 
or to-roll-stabilize such research missiles therefore should be used 
unless their inherent rates of roll are very small. 

The preceding andysis mqy be used to indicate the design features 
required for stability of missiles thatare intended to roll continually 
in flight. If such missiles roll at a smaller frequency than the 
frequencies of their longitudinal and directional oscillations, then 
equal stability in both planes is desirable, a5 it ha in the case of the 
full-scale airplane. If the rolling frequency is greater than that of 
the more rapid oscillation, as is usually the case with such missiles, 
then a fin providing stability in only one plane is adequate to 
stabilize the mi&Si18; The in5tability in the other direction should 
not be so -eat as to place the eystem in the unstable region of figure 3, 
however. 

-- 

The results of figure 3 indicate that a body which is un&able in 
both planes cannot be stabilized by spinning, a result which appears to 
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disagree with the normal practice of stabilizing projectiles by spinning. 
The stabilization of projectiles by spinning cannot be studied from the 
numerical results presented in figure 3 because these results apply to 
the ca5e where the moment of inertia about the longitudinal axis IX 

. is zero. The stability of spinning projectiles depends on the value 
of Ix. The+preceding analysi5 may readilybe extended-to include the 
case of an axially symmetrical body with a finite value of Ix. In-this 

. 
case, it may be shown that the axis of the rapidly spinning body will 
perform constant-amplitude oscillations in the a3sence of damping forces 
whether or not it is stable in pitch and yaw. If the body is unstable, 
however, dsmping forces in pitch and yaw will produce an increasing 
oscillation; whereas, if the body is stable, damping forces will produce 
a decreasing oscillation. Inaflmuch as most eriLUery projectiles are 
unstable in pitch and yaw, they cannot be called truly stable in flight. 
The rate of divergence of the oscillation is small enough, however, to 
avoid appreciable increase in amplitude during the time of flight. 

C0RCLuE10ms 

An analysis hae been made to show the effects of rolling on the 
stability of aircraft. Inthis analysis, itwae assumedthatthe 
longitudinal and directional motions involved onJy pitching and yawing, 
respectively, and that the rolling velocity wa5 constant. The neglect 
of the additional degrees of freedom and of the possible effect of 
sideslip on the rolling velocity may lead to 5011~3 inaccuracy, perticularly 
in cases where the rolling velocity is small and the dihedral effect, 
large. The analysis is expected to apply closely, however, in the 
caees of greatest interest where the aircraft has high density and is 
rolling rapidly. Etxmthe results presented, the combinations of 
directional and longitudinal stability that produce stable motion with 
different rates of roll may be calculated and the effect of rolling on 
the characteristics of the motion in pitch and yaw may be found. The 
analyeis leads to the following conclusions: 

1. Rolling of an airplane mey introduce inertia forces that tend 
to swing the fuselage out of line with the flight path. These forces 
tend to produce (1) longitudinal instability if the longitudinal 
stability of the nonrollinn airplane is smell compared with its 
directional stability and (2) directional instability if the directional 
stability of the nonrolling airplane is small compsred with its 
longitudinal stability. This tendency towerd instability lasts only 
as long as the airplane rolls and, therefore, would not effect normal 
flying of anairplane. The destabilizing effect may be appreciable 
on airplanes of short span and high density, csrrying most of their 
weight in their fuselages, and flying at high altitudes. On such 

I airplanes, dangerous attitudes might be reached in rapid rolls, particularly 
if the rolling continued through 360~. Instability occur5 when the rolling 
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frequency exceeds the lower of the pitching and yawing natural frequencies. 
This type of instability does not occur if-the stabllities about the two 
axes are about equal though rolling reduces the stability in this case. 

- .-A--M. 
2. The pitching and yawing oscillation frequencies as recorded by 

instruments in anaticraftare chamgedwhenthe aircraft is rolling. I 
These frequencies measured in a rolling aircraft- cannot, therefore, be! 
used directly to calculate the longitudinal and directional stability ' 
;of the nonrolling aircraft. - r-. 

3. Missiles rolling rapidly may be stabilized by a fin in only one 
plane, -provided that-the frequency of the rolling motion is greater than 
the natural frequency of the oscillation of the nonrolling missile in 
the plane in which the fin producea stabilizing moments and provided 
that the instability in the other plane is not too great. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., March 25, 1918 
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Figure l.- Sketch of single-degree-of-freedom system. 
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Figure 2. - Relations between angles of pitch and yaw and angular 
velocities about body axes and flight-path axes. (Views 
perpendicular to flight path. ) 
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Figure 3.- Contour lines of nondimensional oscillation fkequencies 
of rolling aircraft on a plot of w e2 against wllr ’ for the case 

IX = 0,’ 50 = 59 = 0. Regions of diagram free from 

divergence or increasing oscillations indicated by cross -hatching. 
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Figure 4. - Contour lines of nondimensional oscillation frequencies 
of rolling aircraft on a plot of we2 against u*’ for the case 

IX = o.=y, co = S$ = 0. Regions of diagram free from 

divergence or increasing oscillations indicated by cross-hatching. 
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Figure 5.- Contour lines of nondimensional oscillation frequencies 
of rolling aircraft on a plot of we2 against WJ,~ for the case 

Ix = Iy’ cg = [Jr = 0. Regions of diagram free from 

divergence or increasing oscillations indicated by cross-hatching. 
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A Section Ah-A 

(a) Symmetriaal rolling body stabilized by fins, with weight distributed 
almgthelongitudinal axle. Sectional tier i11ustratet3genera1 
motion of a point on the axis. 

- 

Tail fins on body 

\ 
. -A '\- Flight-path axis 

(b) Section 1 i a v eus through tail fins of symmetrical rolling body, showing 
the two types of motion which lead to constant amplitude yawing and 
pitching oscillations with respect to body axes. 

Figure 6.- Motion of a symmetriaal rolling body stabilized by fins, with 
weight distributed along the longitudinal axle. 
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(c) .Generation of motion on a tilted straight line 
by combination of two circular motions with the same 
frequency and amplitude, opposite direction and arbi- 
tory phase difference. Cirole B is shonn displaced 
frm oirole A for clarity. 

(d) Generation of motion on an ellipee with 
tilted axis by combination of two circular 
moticau with the same frequency, uueqnal 
amplitude, opposite directioqand arbitrary 
phase difference. 

Figure 6.- Conclnded. 
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Figure 7.- Fraction of original amplitude to which oscillation decays 
in one cycle as a function of the damping ratio ( . 
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Figure 8.- Divergence boundaries on a plot of w e2 against wlp2 for ’ 

the case 
Ix = 0, c* = !$ = 0.2. Stable side of boundaries 

indicated by cross -hatching. Comparison with figure 3 shows effect 
of increased damping. 
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Figure 9.- Stability boundaries on a plot of we2 against ~~2 for the 

case Tz = 0, s,mo = 0.2, and $u+ = 0.2. Stable side of * 
. 

- 
boundaries indicated by cross -hatching. . . 
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Flgure lO.- Roots of the stability equation for various combkations 
of frequency and dampine;. Ix = 0. 
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Figure lo.- Continued. 
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Figure 11. - Yawing, pitching, and rolling frequencies as a function of 

pb altitude for an existing transonic research airplane. - = 0.05; 
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